Multivariate spatial nonparametric modelling via kernel processes mixing.
نویسندگان
چکیده
In this paper we develop a nonparametric multivariate spatial model that avoids specifying a Gaussian distribution for spatial random effects. Our nonparametric model extends the stick-breaking (SB) prior of Sethuraman (1994), which is frequently used in Bayesian modelling to capture uncertainty in the parametric form of an outcome. The stick-breaking prior is extended here to the spatial setting by assigning each location a different, unknown distribution, and smoothing the distributions in space with a series of space-dependent kernel functions that have a space-varying bandwidth parameter. This results in a flexible non-stationary spatial model, as different kernel functions lead to different relationships between the distributions at nearby locations. This approach is the first to allow both the probabilities and the point mass values of the SB prior to depend on space. Thus, there is no need for replications and we obtain a continuous process in the limit. We extend the model to the multivariate setting by having for each process a different kernel function, but sharing the location of the kernel knots across the different processes. The resulting covariance for the multivariate process is in general nonstationary and nonseparable. The modelling framework proposed here is also computationally efficient because it avoids inverting large matrices and calculating determinants, which often hinders the spatial analysis of large data sets. We study the theoretical properties of the proposed multivariate spatial process. The methods are illustrated using simulated examples and an air pollution application to model components of fine particulate matter.
منابع مشابه
Robust quantile estimation and prediction for spatial processes
In this paper, we present a statistical framework for modeling conditional quantiles of spatial processes assumed to be strongly mixing in space. We establish the L1 consistency and the asymptotic normality of the kernel conditional quantile estimator in the case of random fields. We also define a nonparametric spatial predictor and illustrate the methodology used with some simulations.
متن کاملNonparametric Estimation for Stationary Processes
We consider the kernel density and regression estimation problem for a wide class of causal processes. Asymptotic normality of the kernel estimators is established under minimal regularity conditions on bandwidths. Optimal uniform error bounds are obtained without imposing strong mixing conditions. The proposed method is based on martingale approximations and provides a unified framework for no...
متن کاملLocal Linear Fitting under Near Epoch Dependence: Uniform Consistency with Convergence Rate
Local linear fitting is a popular nonparametric method in nonlinear statistical and econometric modelling. Lu and Linton (2007) established the point wise asymptotic distribution (central limit theorem) for the local linear estimator of nonparametric regression function under the condition of near epoch dependence. We further investigate the uniform consistency of this estimator. The uniformly ...
متن کاملTime-Dynamic Density and Mode Estimation with Application to Fast Mode Tracking
We introduce a nonparametric time-dynamic kernel type density estimate for the situation where an underlying multivariate distribution evolves with time. Based on this time-dynamic density estimate, we propose nonparametric estimates for the time-dynamic mode of the underlying distribution. Our estimators involve boundary kernels for the time dimension so that the estimator is always centered a...
متن کاملSemi- and Nonparametric ARCH Processes
ARCH/GARCH modelling has been successfully applied in empirical finance for many years. This paper surveys the semiparametric and nonparametric methods in univariate andmultivariate ARCH/GARCHmodels. First, we introduce some specific semiparametric models and investigate the semiparametric and nonparametrics estimation techniques applied to: the error density, the functional form of the volatil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistica Sinica
دوره 23 1 شماره
صفحات -
تاریخ انتشار 2013